
Proceedings of the IASTED International Conference

Applied Modelling and Simulation
September 1-3, 1999 Cairns, Australia

300-174 1

A Security Policy Manager For Multilevel Secure Object-

Oriented Database Management Systems

Ramzi A. Haraty

Lebanese American University

P.O. Box 13-5053

Beirut, Lebanon

rharaty@lau.edu.lb

Abstract

 Much attention is being directed toward the

development of secure database applications.

Such systems are critical for both military as

well as sensitive commercial applications. The

majority of research in security and multilevel

secure database management systems are

focused on relational systems. However, with the

pervasiveness of complex applications, research

in object-oriented security has gained more

prominence. In this paper, we describe a secure

algorithm for security policy management in

multilevel secure object oriented database

management systems (MLS/OODBs) based on

artificial intelligence techniques.

Keywords: Artificial Intelligence, Object

Inheritance, Security Policy, and Topological

Sort Order Procedure.

1. Introduction

 An object is meant to represent a concept in the

real world. Each object belongs (or is an instance

of) a single class. A class is viewed as having two

parts, a structure and a behavior. The structure is

the instance variables and the methods of the class

define its behavior. Classes are encapsulated

entities, and the public methods for each class

provide the user interface to that class, hiding the

implementation details. Classes can be either base

or derived. Derived classes inherit from one or

more base classes. The set of classes in OODB is

organized into a class hierarchy and the schema of

each class includes the schema of all of its

superclasses.

 An object-oriented database is a system which

provides all the functionality of a traditional

database such as persistence, integrity, transaction

management, concurrency control, recovery, query

processing and security, as well as object-oriented

features such as data abstraction, encapsulation,

inheritance, object identity, intelligence, versioning

and better performance for complex applications

[1].

 Data abstraction provides the necessary

facilities for incorporating more complex data

types such as images, voice segments, vectors, etc.

The Object-Oriented Data Model provides a

better, more powerful, and often more efficient

data model. Object-oriented data modeling is

closer to real world modeling and therefore, it is

more intuitive. Information is modeled in the form

of classes and objects that capture the structure and

behavior of real world entities. OODB systems

maintain unique Object Identifiers (OID) for every

object. Therefore, eliminating the need for

arbitrarily primary keys. This feature solves many

integrity issues and speeds up the database access.

The access speed is improved due to the reduction

of expensive joins on attributes. Encapsulation

couples the data and its associated operations in an

atomic unit. This practice has the benefit of hiding

the details of the data from the user. Furthermore,

the implementation of the operations (methods)

may be modified without invalidating the

applications that use them. OODB systems are

more intelligent than traditional databases. This is

mainly due to encapsulation, which gives the

database the ability to reason about its domain,

integrity, validation, and consistency. This

awareness in part of the OODB systems triggers

appropriate methods to deal with any possible

problem. Versioning provides the ability to

maintain multiple versions of each object allowing

design teams to speculate with “what if” scenarios.

Better performance, is often achieved by

applications which need to display complex

objects. Such applications can perform two to

three orders of magnitude better in an object-

oriented environment [1]. This is due to the fact

that, it is easier and faster to follow pointers than to

join multiple tables.

 Inheritance encourages data and code

reusability and incremental development.

Organizing generalized classes at the top of the

Proceedings of the IASTED International Conference

Applied Modelling and Simulation
September 1-3, 1999 Cairns, Australia

300-174 2

hierarchy and deriving specialized classes from

them allows us to incrementally augment or extend

the database functionality [2]. However,

inheritance may get in direct conflict with the

security guidelines of the system. For instance, an

object may inherit no access default (upon creation

of the object) from one superclass and read access

only from another. Which default access should

the object inherit?

 The aim of this paper is to address the questions

just posed above. Specifically, it addresses the

issue of security when it comes to object

inheritance in a MLS/OODB. We will identify a

set of security constraints and later describe a

security policy manager that interacts with these

security constraints in order to achieve a secure

and trustworthy MLS/OODB.

 This paper is organized as follows: Section 2

presents the security model for MLS/OODBs.

Section 3 discusses the security policy manager

and its different techniques. Section 4 describes an

example of the how security manager works with

multiple inheritance. Section 5 contains the

conclusion.

2. The Security Model For MLS/OODBs

 There are two standard types of security in

database systems: discretionary security and

mandatory security. Discretionary security

restricts access to data items at the discretion of the

owner. Most commercial database management

systems employ some form of discretionary

security by controlling access privileges and

modes of users to data [3]. Discretionary security

is not adequate in a multilevel secure environment

however, because it does not prevent Trojan horse

attacks and provides a low level of assurance.

Mandatory security restricts access to data items to

cleared database users. It is widely employed in

military applications and provides a high level of

assurance.

 Numerous commercial and military

applications require a MLS/OODB. In an

MLS/OODB, database users are assigned

classifications levels, and data items are assigned

sensitivity levels. It is the responsibility of the

MLS/OODB to ensure that users can access only

those data items for which they have been granted

a clearance.

 We use the standard military security approach

that consists of two components: a set of security

classes and a set of non-hierarchical

compartments. The security classes are totally

ordered from the lowest to the highest as follows:

unclassified << confidential << secret << top

secret. Within each security class there can be

zero or more compartments (for example,

conventional, chemical, and nuclear).

 We say that a class, S1 dominates another

security class, S2, if S1 is hierarchically higher

than S2 and contains all of its compartments. We

refer to users, or the processes that execute on

behalf of users, as subjects. Users are trusted, but

processes are not. Objects, on the other hand,

correspond to data items. The Bell-LaPadula

model defines two security policies commonly

accepted in a system that enforces multilevel

security [4]:

 The Simple Security Policy: A

subject is allowed read access to an

object if the subject’s classification

level is identical to or higher than

that of the object's sensitivity level.

 The * - Policy: A subject is allowed

write access to an object if the

subject’s classification level is

identical to or lower than that of the

object's sensitivity level.

 These policies, although important, are not

complete for an object-oriented setting. Additional

policies are needed to ensure security. These

constraints can be summarized in the following

policies:

 The Class Security Policy: The

sensitivity level of a class must be

identical to or lower than the

sensitivity level of its subclasses.

 The Instance Security Policy: The

sensitivity level of all instances

(objects) of a class must be identical

to or higher than that of its class.

 These policies guarantee that proper access to

objects will not be violated directly.

3. The Security Policy Manager

 The security policies mentioned above need

to be augmented with a trustworthy mechanism

that determines for a given subclass of objects

what polices and security values to inherit from

Proceedings of the IASTED International Conference

Applied Modelling and Simulation
September 1-3, 1999 Cairns, Australia

300-174 3

its superclasses. This is especially complicated

when an object inherits from more than one

superclass. We propose a security management

mechanism that is partially based on the

Topological Sorting Procedure [5] to solve this

problem. The security manager is part of the

Trusted Computing Base (TCB) of the OODB.

The TCB is the totality of the protection

mechanisms within the OODB, the combination

of which is responsible for enforcing a security

policy [6]. The security policy manager also

determines what new security values to supply

for newly created objects.

 In OODB the slots in an instance are

determined by that instance’s superclasses. If a

superclass has a slot, then the instance inherits

that slot. Sometimes slot values are specified

after an instance is created. Alternatively, the slot

values of an instance may be specified,

somehow, by the classes of which the instance is

a member. By writing down, in one place, the

knowledge that generally holds for individuals of

that class, one can benefit from the

characteristics of sharing centrally located

knowledge.

 One way to accomplish knowledge sharing is

to use when-created procedures associated with

the classes of which the instance is a member.

The expectations established by when-created

procedures are called defaults.

 In the simplest class hierarchies, no more than

one when-created procedure supplies a default

value for any particular slot. This is the method

used by a variety of OODBs, as currently most

of them do not support multiple class

inheritance. From a security perspective, this

creates no problem as the inheritance mechanism

works straightforward. Often, however, several

when-created procedures, each specialized to a

different class, supply default values for the

same slot. How can the OODB decide which

when-created procedure to follow? This is

complicated by the fact that a given slot may

inherit contradictory security defaults, which

may lead to insecure access and therefore a

violation of the security policy. This is where the

security policy manager comes in.

 First, the security policy manager learns about

the special case in which no class has more than

one Is-a link (is a member of the class slot) and

no class has more than one Ako link (a kind of

slot). Once this foundation is in place, the

security policy manager learns about more

complicated hierarchies in which class have

multiple inheritance links.

 One way to decide which when-created

procedures to use, albeit a way limited to single-

link class hierarchies, is to think of classes

themselves as places where procedures can be

attached. For example consider the class

hierarchy in Figure 1. One of the procedures is

attached to A, and the other to B. Because each

class is the class hierarchy has only one existing

Ako link, it is easy to form an ordered list

consisting of D and the classes it belongs to. This

ordered list is called the class-precedence list:

Figure 1. A Simple Class Hierarchy.

Class-Precedence List:

D

C

B  procedure

A  procedure

 So now, when D is created, and according to

the class-precedence list, two procedures supply

default values for D. Which one to choose from?

The security policy manager resolves this

conflict in favor of the most specific one – the

one that is first on the class-precedence list – i.e.,

B.

 When there is more than one Is-a link above

an instance or more than one Ako link above a

class, then the class hierarchy is said to branch.

Because the class hierarchy branches, the

security policy manager must decide how to

flatten the class hierarchy into an ordered class-

precedence list.

 One choice the security policy manager has is

to use depth-first search. Depth-first search

makes sense because the standard convention is

 A

 B

 C

 D

Ako

Ako

Is-a

Proceedings of the IASTED International Conference

Applied Modelling and Simulation
September 1-3, 1999 Cairns, Australia

300-174 4

to assume that information from specific classes

should override information from more general

classes. Left-to-right search makes sense too, but

only because the security policy manager needs

some way to specify the priority of each direct

superclass, and the standard convention is to

specify priority through the left-to-right

superclass order. However, the security policy

manager must modify depth-first search slightly,

because the security policy manager wants to

include all classes exactly once on the class-

precedence list. To perform exhaustive depth-

first search, the security policy manager explores

all paths, depth first, until each path reaches

either a leaf class or a previously encountered

class.

 To keep a class’s superclasses from appearing

before that class, the security policy manager

modifies the depth-first, left-to-right search by

adding the up-to-join procedure. The up-to-join

procedure stipulates that any class that is

encountered more than once during the depth-

first, left-to-right search is ignored until that

class is encountered for the last time.

 The security policy manager, when

employing the depth-first, up-to-join procedure

for computing class-precedence lists still leaves

something to be desired – the class order on the

class-precedence list may change because left-to-

right order, by convention, is supposed to

indicate priority. The security policy manager is

also designed to handle situations where each

direct superclass of a given class should appear

on class-precedence lists before any other direct

superclass that is to its right.

 The topological-sorting procedure, that is part

of the security policy manager keeps direct

superclasses in order on class precedence lists.

Thus, the security policy manager knows the

order of a class’s direct superclasses on the

class’s class-precedence list as soon as it knows

how the direct superclasses are ordered. The

security policy manager does not need to know

the entire structure of the class hierarchy.

 The first step in forming a class-precedence

list for an instance using topological sorting is to

form an exhaustive list consisting of the instance

itself and all classes that can be reached via Is-a

and Ako links from that instance. This list

constitutes raw material for building the class-

precedence list; it is not the class-precedence list

itself.

 The next step is to form a list of pairs for the

one instance and the many classes on the raw-

materials list [we refer to both the instance and

the classes on the raw-materials list as items].

 To form a list of pairs for an item on the raw-

materials list, think of passing a fishhook

through the item and that item’s direct

superclasses. Next walk along the fishhook from

barb to eyelet while making a list of pairs of

adjacent items encountered on the hook.

 The next step is to look for an item that

occupies the left side of one or more pairs, but

does not occupy the right side of any pair. To

make it easier to refer to such an item, let us say

that it is exposed. Whenever you find an exposed

item, the security policy manager adds it to the

end of the class-precedence list and strikes out

all pairs in which it occurs. However, it may be

the case that in the process of building the class-

precedence list, two classes get exposed. The

security policy manager’s tiebreaker is to select

the class that is a direct superclass of the lowest

precedence class on the emerging class-

precedence list. The process is repeated until all

the fish hook pairs are eliminated.

4. An Example

 Consider the class hierarchy in Figure 2. The

raw-materials list, for instance I, contains: I, F,

C, B, G, D, H, E, and A. The next step is to

form, using the fish hook approach, a list of pairs

for the one instance and the many classes on the

raw-material list.

A

AKO

B

AKO AKO AKO

C D E

AKO AKO AKO AKO

F G H

Is-a Is-a Is-a

I

Figure 2 Another Class Hierarchy.

Proceedings of the IASTED International Conference

Applied Modelling and Simulation
September 1-3, 1999 Cairns, Australia

300-174 5

 Following the fish hooks for all the items on

the raw-materials list results in the following

pairs:

Node Fish Hook Pairs

I I-F, F-G, G-H

F F-C

C C-B

B B-A

G G-C, C-D

D D-B

H H-E

E E-B

A A

 The next step is to look for an exposed item

and add it to the end of the class-precedence list.

Class-Precedence List:

I

F

G  procedure

C  procedure

D

H

E

B

A

 Suppose two default access procedures when-

created procedures were constructed, one for C

and the other for G, and suppose that instance I

was just created (after the two when-created

procedures were constructed). Which default

access to follow? The security policy manager

would choose G since it appears before C on the

class-precedence list.

5. Conclusion

 This paper presented security policies

specifically developed for MLS/OODBs. These

policies are required since the security

constraints of the Bell-LaPadula model would

not be enough to prevent information flow in

violation of the security policy. This paper also

presented an algorithm that it directly aimed at

resolving conflicts, when it comes to security in

inheriting slot values from superclasses. We

believe that this algorithm is accurate, flexible,

and secure.

References:

[1] Hakimzadeh, H., Object-Orientation Primer.

(Department of Computer Science Technical

Report (NDSU-CSOR-TR-1992-20). North

Dakota State University - Fargo, ND. 1992).

[2] Coad, P. and Yourdon, E., Object-Oriented

Analysis. (Yourdon Press Computing Series,

1991).

[3] Griffiths, P. P. and Wade, B. W., An

Authorization Mechanism for a Relational

Database System. (ACM Transactions on

Database Systems, Volume 1, Number 3, 1976).

[4] Bell, D. E., LaPadula, L. J., Secure Computer

System: Unified Exposition and Multics

Interpretation. (Technical Report MTR-2997,

The MITRE Corporation. Bedford, MA, March

1976).

[5] Winston, P. H, Artificial Intelligence.

(Addison-Wesley Publishing. Reading, MA,

May 1993).

[6] Department of Defense, Trusted Computer

Systems Evaluation Criteria. (National

Computer Security Center, 1985).

Biography

Ramzi A. Haraty is an Assistant Professor of

Computer Science at the Lebanese American

University in Beirut, Lebanon. He received his B.S.

and M.S. degrees in Computer Science from

Minnesota State University - Mankato, Minnesota, and

his Ph.D. in Computer Science from North Dakota

State University - Fargo, North Dakota. His research

interests include database management systems,

artificial intelligence, and multilevel secure systems

engineering. He has well over 35 journal and

conference paper publications.

